Economic Impact of Foot-and-Mouth Disease in India: An Evidence from Andhra Pradesh

B. Ganesh Kumar
BVsc, MSc (Dairying), PhD
Principal Scientist (Agricultural Economics)

Importance of Livestock Sector in India

☐ Livestock is an important sub-sector of Indian agriculture (29% of the AgGDP and 4.11% of total GDP). ☐ India has a total livestock population of >500 million and bovine population is about 300 million (19th Livestock Census, 2012). ☐ Milk production during 2015-16 was >155 million litres, produced mostly by the smallholder farmers and consumed domestically. ☐ Meat production was **7 million tonnes**, of which 25% enters export market. ☐ The sector provides **employment to about 16 million** people and it plays a vital role in improving the socio-economic conditions of rural masses (DAHDF, 2016-17).

Livestock Health & FMD... in India

- ☐ The share of crossbred bovine is increasing over the years, due to which susceptibility to various diseases has increased. ☐ The country has a comprehensive scheme on 'Livestock Health & Disease Control' (health care against FMD, PPR, Brucellosis and CSF. ☐ The flagship programme is **FMD-CP**, being implemented in 351 districts in 13 states and 6 union territories with the funding of Rs. 170 crores (~28 million US\$) during 2015-16.
- ☐ The country accords the **highest priority for the eradication of FMD**, because it causes enormous economic losses to the millions of smallholder farmers, besides meat industry.

FMD-CP and its continuance

- ☐ India has established three zones as 'FMD free Zones where vaccination is practiced', as per OIE guidelines and dossier has been submitted to OIE for their recognition.
- ☐ Though the benefit of FMD-CP is widely recognized, **policy makers in our country still need empirical evidence** for continuous support.
- ☐ In this context, this study was conducted during 2009-11 in India, in order to assess the farm-level economic impact due to FMD in 2 different settings (area where FMD-CP is in operation and the area where it is not there).

Impact due to FMD

- □ It is generally **not fatal** (mature livestock), but increases the risk of **abortion** (pregnant animals) and of **mortality** (young livestock).
- □ FMD leads to **reduced productivity** and require increased expenditures on feed, medication and shelter (Rich and Winter-Nelson 2007).
- □ The economic losses caused by the disease are mainly due to losses in milk production and reduction in working capacity of work animals (Bandyopadhyay, 2003; Venkataramanan et al. 2005).
- ☐ In addition, milk and milk products, meats and hides are not accepted by the disease-free importing countries causing reduction in the export potential of the livestock industry.

Sample districts in Andhra Pradesh (India)

Direct losses due to FMD

☐ Milk yield reduction
 ☐ Draught power reduction
 ☐ Treatment costs
 ☐ Mortality
 ☐ for indigenous cattle, crossbred cattle, local buffaloes,

upgraded buffaloes

\square Loss due to milk yield reduction (L_{γ})

$$L_Y = (M_{Post}) * D * P$$

```
where,
```

M_{Pre} = Milk yield at pre-FMD period (Litres/day)

M_{Post} = Milk yield at post-FMD period (Litres/day)

D = Duration of infection in in-milk animals

P = Price / litre of milk (Rs.)

☐ Loss due to draught power reduction (L_D)

$$L_D = [(H_{Pre} - H_{Post})/8] * D * W$$

where,

H_{Pre} = Draught power at pre-FMD period (Hours/day)

H_{Post} = Draught power at post-FMD period (Hours/day)

D = Duration of infection in bullocks

W = Hiring charges / day (Rs.)

\square Loss due to treatment costs (L_T)

$$L_T = (C_P * N) + C_I$$
$$C_P = F + M$$

where,

C_p = Cost of professional treatment (Rs)

F = Fees for veterinarians / visit (Rs)

M = Cost of medicines / visit (Rs)

N = No. of visits to animal health services

C_I = Cost of indigenous treatment during the infected period (Rs)

\square Loss due to mortality (L_M)

$$L_M = \sum A_{ij} * V_{ij}$$

where,

- A_{ii} = Species-wise category of bovines
- V_{ii} = Average value of animals (Rs)
- = Species of animal, viz. Indigenous cattle, crossbred cattle, local buffalo and upgraded buffalo
- j = Category of animals, viz. In-milk, dry, bull, bullock, immature males, heifer, male calf and female calf

Factors influencing compliance to vaccinating the animals against FMD

Probit Model

$$Y = a_0 + \beta_1 AGE + \beta_2 EDN + \beta_3 FAMILY +$$

$$\beta_4 EXP + \beta_5 FARM + \beta_6 TINC +$$

$$\beta_7 CASTE (D_1) + \beta_8 CASTE (D_2) + \beta_9 CASTE (D_3) + U_i$$

where,

Y = Compliance to vaccination (1 for 'Yes' and 0 for 'No')

AGE = Age of the farmer

EDN = Education level of the farmer (No. of years of formal education)

FAMILY = Family size of the farm household

```
EXP = Experience in dairying (No. of years)
```

FARM = Farm size (No. of bovines in the farm household)

TINC = Total income of the farmer

D₁ = Dummy (Other backward caste)

D₂ = Dummy (Scheduled caste)

D₃ = Dummy (Scheduled tribe)

 U_i = Error term

FMD attacks and death in the sample farms

	FMD CP	districts	FMD non-CP districts		
Impact	Chittoor	Medak	Nellore	Mahbub nagar	
Total animals	203	240	482	345	
Attacles	38	80	98	122	
Attacks	(18.72)	(33.33)	(20.33)	(35.36)	
Deaths	7	8	21	27	
	(18.42)	(10.00)	(21.43)	(22.13)	

Note:

Figures in parentheses under 'attacks' indicate percentages to total no. of animals in the affected households

Figures in parentheses under 'deaths' indicate percentages to total no. of animals attacked

FMD attacks and death by different species of dairy animals (FMD-CP districts)

Chittoor

Medak

FMD attacks and death by different species of dairy animals (FMD non-CP distrits)

Nellore

Mahbubnagar

Total Direct Economic Impact due to FMD

Indirect losses....not quantified

Permanent reduction in production ■ Body weight loss (feed/maintenance/) ☐ Abortion Long intercalving period / service period Permanent lameness of draught animals ■ Market and price effects ☐ Trade effects Food security and nutrition ☐ Health and environment effects Costs of inspection, monitoring and surveillance

Projections of estimated total direct loss due to FMD in Andhra Pradesh

S.No.	Impact	Loss / animal (Rs.)	Susceptible Population	Incidence rate (%)	Total loss (Rs. in crores)
1.	Loss due to milk yield reduction				
	Indigenous cattle	5085	1530651	0.09	71.98
	Crossbred cattle	9256	642362	0.23	137.92
	Buffaloes	8742	4682371	0.04	178.68
	Sub-total 388.5				
2.	2. Loss due to draught power reduction				
	Indigenous cattle	11044	3897284	0.08	361.42
	Crossbred cattle	9658	166866	0.23	37.37
				Sub-total	398.79

S.No.	Impact	Loss / animal (Rs.)	Susceptible Population	Incidence rate (%)	Total loss (Rs. in crores)
3.	Treatment costs				
	Indigenous cattle	2455	13850121	0.06	215.89
	Crossbred cattle	3516	1516264	0.13	102.86
	Buffaloes	1254	9614938	0.03	32.66
Sub-total					351.41
4.	. Loss due to mortality				
	Indigenous cattle	114	16338975	0.002	0.33
	Crossbred cattle	1596	2305179	0.02	7.55
	Buffaloes	191	15379360	0.002	0.65
Sub-total					8.53
Grand Total				1147.31	

Share of estimated total direct loss due to FMD in Andhra Pradesh

Message 1: Despite the FMD-CP, farmers report that FMD outbreaks still persist

Number of FMD outbreaks in the study area

Message 2: Seasonality and spatial hotspots characterize prevalence of FMD in Andhra Pradesh

Seasonality of FMD incidences in 2008 (FMD-CP districts)

Seasonality of FMD incidences in 2008 (FMD non-CP districts)

Message 3: Use of vaccination influenced by education level, experience and income of the farmers

Factors influencing compliance to vaccinating the animals against FMD in Andhra Pradesh

Dependant variable: Vaccination in 2008 (Yes-1; No-0)

Variable	Coefficients	't' values	'p' values
Constant	-0.1886	-0.532	0.5945
Age	0.0045	0.756	0.4496
Education (No. of years)	0.0647***	4.172	0.0000
Family size	-0.0405	-1.276	0.2018
Experience in dairying (No.	0.0445***	5.255	0.0000
of years)			
Farm size	-0.0212	-1.587	0.1124
Total income (Rs.)	0.0005***	2.480	0.0131
Caste (D1): OBC	-0.5118***	-3.265	0.0011
Caste (D2): SC	-0.3158	-1.434	0.1516
Caste (D3): ST	-1.0154 ***	-3.805	0.0001

^{*} Significance at 1% level

^{**} Significance at 5% level

^{***} Significance at 10% level

Message 4: Marketing channels and trade practices may influence the persistence of FMD in the study area

Trade of animals between farmer-farmer reduces the outbreak

Medak district (FMD-CP distrcit)

Trade of animals through brokers increases the incidence of outbreak

Mahbubnagar district (FMD-non CP distrcit)

Distress sale of dairy animals in Andhra Pradesh

Message 5: Perceptions about FMD vaccine partly explain why some farmers fail to vaccinate their herds for FMD

Reasons for not vaccinating against FMD

Conclusions & some Policy Implications

- ☐ FMD is still one of the major economically important diseases affecting bovines in India
 - ☐ though the country is progressing well in PCP.
- ☐ The overall financial loss at farm level due to FMD was more in non-CP districts than in CP districts
 - ☐ indicating the effectiveness of the vaccination programme.
- □ It was projected that the state of Andhra Pradesh would stand to loose Rs. 1147 crores (191 million US\$) on account of direct impcts alone , if there is no vaccination programme against FMD.
 - ☐ Similarly, the country would incur a total direct loss of Rs. 15575 crores (2.6 billion US\$).

Suggestive Policy Measures

☐ Expansion of FMD-CP to the whole country. Complete coverage of the susceptible animal population in vaccination. Ring vaccination where there is an isolated outbreak. ■ Alert animal health service system during the most likely season. ☐ Incentive system for the farmers to comply for vaccinating their animals. ☐ Increse the awareness of the farmers and traders about the implications of FMD. ☐ Regulation on the movement of animals across regions.

Thank You